Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Ying Huang* and Wei Xu

Department of Chemistry, Ningbo University, Ningbo 315211, People's Republic of China

Correspondence e-mail:
jianyinghuang@gmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.097$
Data-to-parameter ratio $=15.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(2-Bromophenyl)-2-phenylpropanamide

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds result in the formation of a chain parallel to the c axis.

Comment

It is known that 2-phenylacetamide derivatives have significant biological activities and some of them have been tested for anticonvulsant and anti-epileptic activities in mice (Yamagami et al., 1984). In addition, they are important intermediates in the synthesis of benzoxazoles (Evindar \& Batey 2006; Pottorf et al., 2002) and oxindoles (Lee \& Hartwig, 2001; Shaughnessy et al., 1998). As part of our interest in this field, we have synthesized and characterized the title compound, (I).

(I)

The molecule is built up from two benzene rings linked through a propanamide fragment (Fig. 1). The two aromatic rings make a dihedral angle of $64.9(1)^{\circ} . \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions link the molecules into chains extending parallel to the c axis (Fig. 2 and Table 1).

Experimental

2-Bromobenzenamine ($1.72 \mathrm{~g}, 10 \mathrm{mmol}$), 2-phenylpropanoic acid ($1.5 \mathrm{~g}, 10 \mathrm{mmol}$), DCC (N, N^{\prime}-methanediylidenedicyclohexanamine; ($2.45 \mathrm{~g}, 12 \mathrm{mmol}$), DMAP (4-dimethylaminopyridine; $0.12 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ were stirred in a round-bottomed flask at 273 K

A perspective view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii.
for 24 h . The reaction mixture was then cooled to 273 K , filtered and the solvent removed in vacuo. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 20: 1\right.$ hexane/EtOAc) to give the desired product (yield 89%). Colourless crystals were obtained from a hexane-EtOAc (2:1) solution after it was left to stand for 6 d .

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}$
$M_{r}=304.18$
Monoclinic, $P 2_{1} / c$
$a=11.587(2) \AA$
$b=13.756(3) \AA$
$c=8.433(2) \AA$
$\beta=95.97(3)^{\circ}$
$V=1336.8(5) \AA^{3}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.288, T_{\text {max }}=0.546$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.097$
$S=1.03$
2590 reflections
164 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0474 P)^{2}\right. \\
&+0.2146 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Figure 2
Packing diagram, viewed down the b axis, showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.]

We thank the Foundation of Ningbo University for support (No. 0308039).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Evindar, G. \& Batey, R. A. (2006). J. Org. Chem. 71, 1802-1808.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Lee, S. \& Hartwig, J. F. (2001). J. Org. Chem. 66, 3402-3415.
Pottorf, R. S., Chadha, N. K., Katkevics, M., Ozola, V., Suna, E., Ghane, H., Regberg, T. \& Player, M. R. (2002). Tetrahedron Lett. 44, 175-178.
Rigaku (1998). PROCESS-AUTO. Version 1.06. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Shaughnessy, K. H., Hamann, B. C. \& Hartwig, J. F. (1998). J. Org. Chem. 63, 6546-6553.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yamagami, C., Takao, N., Tanaka, M., Horisaka, K., Asada, S. \& Fujita, T. (1984). Chem. Pharm. Bull. 32, 5003-5009.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

